2007時間目 ~通常更新~
次の漢字の読みを記せ。
レベルⅠ
Ⅰ 奏請
Ⅱ 奔忙
Ⅲ 歓笑
Ⅳ 満貫
レベルⅡ
Ⅰ 死児の齢
Ⅱ 推敲
Ⅲ 猜忌
レベルⅢ
Ⅰ 善章るるあれば賤しと雖も賞す
Ⅱ 獷悍
Ⅲ 脾疳
特別問題A~高校数学~
x,y,z,uが正の整数のとき、x+y+z+u=10を満たす解は何組あるか。但し、例えばx=1,y=z=u=3とy=1,x=z=u=3とは異なる解として数えるものとする。 [準二級]
特別問題B~高校数学~
放物線y=x2上に2点P(t,t2)、Q(t+1,(t+1)2)をとる。次の問に答えよ。
(1) tがすべての実数を動くとき、直線PQが通過する領域を求めよ。
(2) tが-1≦t≦0の範囲を動くとき、線分PQが通過する領域を求め、図示せよ。 [横浜国立大]
2007時間目模範解答
レベルⅠ
Ⅰ 奏請・・・そうせい
意味:天子に申しあげて裁判をあおぐ。
Ⅱ 奔忙・・・ほんぼう
意味:走り回るように非常に忙しい。
Ⅲ 歓笑・・・かんしょう
意味:にぎやかによろこび笑う。うちとけて笑い楽しむ。
Ⅳ 満貫・・・まんがん
意味
①:穴あき銭が、銭さしいっぱいになること。
②:転じて、満点・最高点になること。
レベルⅡ
Ⅰ 死児の齢・・・しじ(の)よわい
意味:教え子や我が子に先立たれたことを嘆くことのたとえ。
Ⅱ 推敲・・・すいこう
意味:詩文の字句や文章を十分に吟味して練り直すこと。
Ⅲ 猜忌・・・さいき
意味:ねたましく思って嫌うこと。
レベルⅢ
Ⅰ 善章るるあれば賤しと雖も賞す・・・ぜんあらわ(るるあれば)いや(しと)いえど(も)しょう(す)
意味:善悪の基準は身分とは無関係であるということ。
Ⅱ 獷悍・・・こうかん
意味:荒々しく猛々しいこと。
Ⅲ 脾疳・・・ひかん
意味:腹が膨れて他部が痩せる小児の病気。
特別問題A~高校数学~
与えられた式を(x-1)+(y-1)+(z-1)+(u-1)=6と変形するとx-1=X、y-1=Y、z-1=Z、u-1=Uとおくと、X+Y+Z+U=6,X≧0,Y≧0,Z≧0,U≧0となる。
よって、求める数は、X,Y,Z,Uの4種類のものから重複を許して6個とる組み合わせの数に等しい。
この重複組み合わせの数は4H6=4+6-1C6=9C6=9C3=84組
特別問題B~高校数学~
(1) 放物線y=x2上の2点P(t,t2),Q(t+1,(t+1)2)を通る直線PQの方程式は、y={(t+1)2-t2}/{(t+1)-t}×(x-t)+t2 ∴y=(2t+1)x-t2-t・・・①
xを固定し、①の右辺をtの関数と見てfx(t)とおく。つまりy=fx(t)=-t2+(2x-1)t+x=-{t-(x-1/2)}2+x2+1/4・・・②
tがすべての関数を動くときに、直線PQの通過する領域を表す不等式はy=fx(t) (-∞<t<∞)のとり得る値の範囲として得られる。
求める領域は{(x,y)|y≦x2+1/4}
(2) 点P(t,t2)における放物線y=x2の接線の傾きはy'=2xから2t
直線PQの傾きは2t+1(>2t)であるから、線分PQは座標平面においてy≧x2・・・③の範囲にある。②が-1≦t≦0の範囲に解をもつのは次の3つの場合である。
[1]-1<t<0の範囲に2解をもつ場合、D≧0、f(-1)=x+y>0 f(0)=-x+y>0 -1<(2x-1)/2<0 よってy≦x2+1/4,y>-x,-1/2<x<1/2
[2]-1<t<0の範囲に1解をもつ場合、f(-1)f(0)=(x+y)(-x+y)<0 よってy<-x,y>xまたはy>-x,y<x
[3]t=-1,t=0の解をもつ場合、f(-1)f(0)=(x+y)(-x+y)=0 よってy=-xまたはy=x
③と[1]~[3]の場合を合わせると、求める領域は図の斜線部である。ただし、境界線を含む。